CETIFICATION

SDG No:

JC24433

Laboratory:

Accutest, New Jersey

Site:

BMSMC, Building 5 Area, PR

Matrix:

Groundwater

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – BMSMC, Building 5 Area, PR. The BMSMC facility is located in Humacao, PR. Samples were taken July 19-20, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for 1,4-Dioxane and Naphthalene. The results were reported under SDG No.: JC24433. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE	MATRIX	ANALYSIS PERFORMED					
L	DESCRIPTION							
JC24433-1	OSGP11-GWS	Groundwater	1,-4-dioxane and Naphthalene (SIM)					
JC24433-2	OSG11D-GWS	Groundwater	1,-4-dioxane and Naphthalene (SIM)					
JC24433-3	OSGP11-GWD	Groundwater	1,-4-dioxane and Naphthalene (SIM)					

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

August 2 2016

A 1591673

SGS Accutest

Report of Analysis

By

IJ

Page 1 of 1

Client Sample ID:	OSGP11-GWS
Lab Sample ID:	JC24433-1

File ID

3P55222.D

Matrix: Method:

AQ - Ground Water

DF

1

Prep Date

07/22/16

Date Sampled: 07/19/16 Date Received: 07/21/16

Project:

SW846 8270D BY SIM SW846 3510C

Analyzed

07/22/16

Percent Solids: n/a

Q

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch** OP95762A E3P2522

Run #1 Run #2

Initial Volume Final Volume Run #1 910 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units 91-20-3 Naphthalene ND 0.11 0.032 ug/l 123-91-1 1,4-Dioxane 1.00 0.11 0.054ug/l

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

4165-60-0 Nitrobenzene-d5 67% 24-125% 321-60-8 2-Fluorobiphenyl 74% 19-127% 1718-51-0 Terphenyl-d14 50% 10-119%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

By

IJ

07/22/16

Page 1 of 1

Client Sample ID: OSGP11D-GWS Lab Sample ID: JC24433-2

File ID

3P55221.D

Matrix: Method:

Project:

AQ - Ground Water

DF

SW846 8270D BY SIM SW846 3510C

Analyzed

07/22/16

BMSMC, Building 5 Area, PR

Date Sampled: 07/19/16 Date Received: 07/21/16

Percent Solids: n/a

OP95762A

Q

Analytical Batch Prep Date Prep Batch

E3P2522

Run #1 Run #2

Initial Volume Final Volume Run #1 950 ml

Run #2

1.0 ml

CAS No. Compound Result RL MDL Units 91-20-3 Naphthalene ND 0.11 0.031 ug/l 123-91-1 1,4-Dioxane 0.979 0.11 0.051 ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 70% 24-125% 321-60-8 2-Fluorobiphenyl 79% 19-127% 1718-51-0 Terphenyl-d14 55% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP11-GWD
Client Sample ID: Lab Sample ID:	JC24433-3

Matrix: Method:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 07/20/16 Date Received: 07/21/16

Percent Solids: n/a

	File ID	DF	Analyzed	Вy	Prep Date	Prep Batch	Analytical Batch
Run #1	3P55220.D	1	07/22/16	JJ	07/22/16	OP95762A	E3P2522

Run #2

Project:

	Initial Volume	Final Volume
Run #1	910 ml	1.0 ml

Run #2

		_				
CAS No.	Compound	Result	RL	MDL	Units	Q
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 1.48	0.11 0.11	0.032 0.054	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobiphenyl	62% 63%		24-12 19-12		
1718-51-0	Terphenyl-d14	35%		10-11	19%	

ND = Not detected

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

100.00			
	16		
		2 1	

																		R	E	VI	SE	D			,		
	a Accu	TEST				CHAL	N O	F C	:US1	О	DY	7													(0	F <u> </u>
	-	NJ				www.astront.com				Antonia	Comme	862				JC24433											
4 5	Clerk / R	eporting information	120		图 一支法	Project	Informal	tlon	Secret-	, 1/36		14.	4/4	317	-2)	10.5	Req	LIPETO	Ang	hain (ten T	EST	200E	shoot)	,	7/4	Matrix Codes
	ny Hudeo			Proposit Number											- 1	_ 1	[1				ì		1	1	Į	OW Drawing Water
Ander	son Mutholi	and & Associates		BACSALC Phas	a ZA Reletso A	Accessment							S11.			650						1		1	1	ĺ	GUI - Ormand Water
Street 4				Short					Sana-è					2017	40	8							l		1		SVV - Shirtings Water
2700 5	Vestchetter	Avenue, Suite 417	Zin				Company	CAL.	1,100	नव् ।	ne t	pert (<u> </u>			vlz 8 2700					1		ŀ				SG-Set EL-Shripe
Clty				Cay		PR	, man	,								뿧		i I				}	1	ŀ			SED-Endment
Purch		4A	10577	Premi 4		FIL	Strait Ad	and a	_						-1	2					1		Į				CO-CO
	Comment.		-	l											- 1	1								Į			AIR - Air SCIL - Other Seed
Phone	ry Tzylor		Paul B	Chica Authora	Onure	-	City				(India)		_	Žφ	-1	黄	i	ŀ I						Į.			WP-Wos
	-261-0400				-		1								H	and Naphthelena		[ŀ		1				FB-Fints Mark CB-Studenment Plant
	o(s) Number(s)		Phone 4	Project Marager			i Sandani		-						7	20		Ιi		1	ľ	1					RB-Péne Bleck
N. I	Cheers, P., Sh	uars, R. Circally, T. Ta	nylor	Teny Taylor											_	Parane											TS-71p Disrik
						Colleges				-	******	- of pr-	7	Letters	H	3				l			ĺ	i			
==	Fletd JD	/ Point of Collection		HED-ID-No.	-	Times	2000	-	4 at 100000	9	1 2	VODE		MEDIT CHICCOL	Ш	1,4-0											EAR USE ONLY
-	OSGP I	I-GWS	·		7-19-16	1305	77	aw	-	П	$\overline{}$	Π,		Т	П	Х							1		1		
-		ID-GWS		 	7-19-16		11	CW	7	17	$^{-}$			-	\sqcap	X	-			1		1				-	
				<u> </u>						╁	-	-	1 1		Н	x	H		_	1—	-	-	-	1	 	<u> </u>	-
	OSGP	11-GWD			7-20-16	1115	Tr.	GW	-2	Н	+	1	4	-	H			-		 	-	-	 	\vdash	\vdash	<u> </u>	
	DSGP	ØX.		1		l		-611	-2		<u> </u>	<u> </u>	44	_ <u> </u> _	14	-X-	120	7-	70-	6		<u> </u>	<u> </u>			<u>L</u> .	<u> </u>
-										П	Т	П	П	Т	П												
								_		Н	+		1=1	\vdash	П										1	_	
			_		 		-			₩		-	╂╌┼		╁╌┼		\vdash	-	_	1		1	i —			├	
					ļ			_		Н	+	H	┦	+	╢	_	<u> </u>		-	-	<u> </u>	-	 -	ļ	-	<u> — </u>	
'	ì									Ш	_i_											_					
										П	Т	П	TI	1	Γ							-	1			_	
									$\overline{}$	П	\top		17		П				_	1							
				ļ			-	\vdash	\vdash	╁╼╁	-		+-		╁┼		-	-	_	-	-		 	 	\vdash	_	
												Н.			H		-5		0.14		/	-	-1.1			11.00	W. A. C. C. A. C. A. C. C. C. C. C.
S.G.	**************************************	O.	1325	- FS - 15	2025	Legisle	500	1.0			40				- 2			7:2			F7 F4	1-1	9-0	2.21.3	7.34	40.00	170
30		antel Titto (Berlinson days)			State (V)						ovable				_		44EYAD	1.2. hr\$3	(wear.	(arian)	Cort	and a	/ Bpeci	معدا أن	cycel	A LAT	ACT A THE SHE WAS A STATE OF
	□ 2m² 11 pm			Approved By Shows	teel PHF (China				2006 "N" (L 1006 "N" (L			-	3 ""	age c													
	11 2017 PC	almone Days by Contract	dental .						Lovet Se		.1		-			-7		\vdash									
	A Dieg Mari							N.1 Playton				-	7 60				-										
	3 Day Ami							Commun				Ē	5 œ	w/	_												
	T I Day con	BRIESWCY					_		CHAPTER													_					
	T Day 254	DRGENCY					ĺ		Copyright MJ Result							Ann or	_										
9 10 10 to	XT UNITED			S.	repla Custosy m	set be docum	entad b	NOW 820	in Demo al	une più	s ct.	age s	pates	sion.	bth	ding c	ourler	delive	F			7.7	Z .	186	Min. I.	175	
Bulg	بأدر باز داهم		1								-								T	lenn.		-	04 P y1				
1	المراسعا	NW	7-20	-16 1700		0 E)	<u> </u>			2					_							3					
1	وسرة يراكسيني	and the same of th	tions Time:		Supplement By: 3					4		e _{s1}	1.7	-20	-16	,			Auga Ti			4	- Pys				
Neg.	greated byt		Zam Three		Pandred Sys						-	10 J			ы,	latera .		Pressure	Ö	n realis	-			0.0		Chelle	Tame.
5					كال	04	بكيا	760		LI /	N II annua	W		4.0	_	_				_							

JC24433: Chain of Custody Page 2 of 4

EXECUTIVE NARRATIVE

SDG No:

JC24433

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

3

Location:

BMSMC, Building 5 Area, PR

Humacao, PR

SUMMARY: Three (3) samples were analyzed for Naphthalene and 1,4-Dioxane following method SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 –Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document,

unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

August 2, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC24433-1

Sample location: BMS-ICM, Humacao, PR

Sampling date: 7/19/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	1.00	ug/l	1	-		Yes

Sample ID: JC24433-2

Sample location: BMS-ICM, Humacao, PR

Sampling date: 7/19/2016 Matrix: Groundwater

METHOD: 8270D (SIM)

Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	0.979	ug/l	1	-	9	Yes

Sample ID: JC24433-3

Sample location: BMS-ICM, Humacao, PR

Sampling date: 7/20/2016 Matrix: Groundwater

METHOD: 8270D (SIM)

Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	1.48	ug/l	1	-	-	Yes

	Date:July_17-July_20,_2016Shipping Date:July_20,_2016
	EPA Region: 2
REVIEW OF SEMIVOLATILE (ORGANIC PACKAGE
The following guidelines for evaluating volatile organization actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous V 2015—Revision 0. Semivolatile Data Validation. The Q on the data review worksheets are from the prima noted.	eviewer in using professional judgment to gethe needs of the data users. The sample a validation guidance documents in the Vaste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance daincluded:	
Lab. Project/SDG No.:JC24433 No. of Samples:3_SIM	Sample matrix:Groundwater
Trip blank No.: - Field blank No.: - Equipment blank No.: - Field duplicate No.: JC24433-1/ JC24433-2	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
_Overall Comments:_Naphthalene_and_1,4-Dioxane_and_	alyzed_by_method_SW846-8270D_(SIM)
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Aal Maul Date:August 2, _2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	55 55 55 55 55 55 55 55 55 55 55 55 55	
	27	
- 4		225
	<u> </u>	
	N	
	-	
	7	
	*	
### = =		
		
		<u> </u>
		<u> </u>

All criteria were met _X
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED		ACTION
		Lalyzed within method recon lescribed in this document.	nmen	ded holding time. Samples properly

Cooler temperature (Criteria: 4 + 2 °C): _____1.9°C_____

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

Table I. Holding Time Actions for Semivolatile Analyses					
Matrix	Preserved	Criteria	Action Detected Non-Detected		
	Freservea	Criteria	Associated Compounds	Associated Compounds	
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use profession	onal judgment	
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qualification		
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	UJ	
	Yes/No	Grossly Exceeded	1	UJ or R	
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use profession	onal judgment	
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	1	Use professional judgment	
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)			
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	บม	
]	Yes/No	Grossly Exceeded	J	UJ or R	

the

			All criteria were metX Criteria were not met see below
GC/MS TUNIN	G		
The assessmentuning QC limit		termine if the sample instrume	entation is within the standard
_X The DF	TPP performance results wer	e reviewed and found to be w	ithin the specified criteria.
_X DFTPF	tuning was performed for eve	ery 12 hours of sample analysi	is.
If no, use profe or rejected.	ssional judgment to determine	whether the associated data	should be accepted, qualified
Notes:	These requirements do not Monitoring (SIM) technique.	apply when samples are a	nalyzed by the Selected Ion
Notes:		traction actions resulting	in spectral distortion are
	-	he instrument performance clophenol is to be performed by	neck solution is optional when the SIM technique.
List	the	samnles	affected.

Act	ions:

List

- If sample are analyzed without a preceding valid instrument performance check or are analyzed 1. 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- Use professional judgment to determine if associated data should be qualified based on the 4. spectrum of the mass calibration compounds.

All criteria were metX
Criteria were not met
and/or see below

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_07/06/16_(SIM)
Instrument ID numbers:	GCMS3P
Matrix/Level:	_Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial	and init	ial calib		ets the method and guid	lance validation document

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Criteria	1	Action		
Criteria	Detect	Non-detect		
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R		
Initial Calibration not performed at the specified concentrations	J	UJ		
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R		
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification		
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment		
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification		

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D'	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	± 40.0	±50.0
Benzaldehyde	0.100	40.0	± 40.0	±50.0
Phenol	0.080	20.0	±20.0	± 25.0
Bis(2-chloroethyl)ether	0.100	20.0	±20.0	±25.0
2-Chlorophenol	0.200	20.0	±20.0	±25.0
2-Methylphenol	0.010	20.0	±20.0	±25.0
3-Methylphenol	0.010	20.0	± 20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	±25.0	±50.0
Acetophenone	0.060	20.0	±20.0	±25.0
4-Methylphenol	0.010	20.0	± 20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	± 20.0	±25.0
Nitrobenzene	0.090	20.0	±20.0	±25.0
Isophorone	0.100	20.0	±20.0	±25.0
2-Nitrophenol	0.060	20.0	±20.0	± 25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	±20.0	± 25.0
2,4-Dichlorophenol	0.060	20.0	±20.0	±25.0
Naphthalene	0.200	20.0	±20.0	±25.0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
lexachlorobutadiene	0.040	20.0	± 20.0	± 25.0
Caprolactam	0.010	40.0	±30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	±20.0	± 25.0
2-Methylnaphthalene	0.100	20.0	±20.0	±25.0
lexachlorocyclopentadiene	0.010	40.0	± 40.0	± 50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	±20.0	±25.0
1,1'-Biphenyl	0,200	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	± 20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	±25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	±20.0	±25.0
Acenaphthylene	0,400	20.0	±20.0	±25.0
3-Nitroaniline	0.010	20.0	±25.0	± 50.0
Acenaphthene	0.200	20.0	±20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	±50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	±50.0
Dibenzofuran	0.300	20.0	±20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	± 20.0	± 25.0
Diethylphthalate	0.300	20.0	± 20.0	± 25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	±20.0	±25.0
4-Chlorophenyl-phenylether	0.100	20.0	± 20.0	±25.0
Fluorene	0.200	20.0	±20.0	±25.0
4-Nitroaniline	0.010	40.0	±40.0	±50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	±50.0
4-Bromophenyl-phenyl ether	0.070	20.0	±20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	± 20.0	±25.0
Hexachlorobenzene	0.050	20.0	±20.0	±25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	±40.0	±50.0
Phenanthrene	0.200	20.0	±20.0	±25.0
Anthracene	0.200	20.0	± 20.0	±25.0
Carbazole	0.050	20.0	±20.0	±25.0
Di-n-butylphthalate	0.500	20.0	±20.0	±25.0
Fluoranthene	0.100	20.0	±20.0	±25.0
Pyrene	0.400	20.0	±25.0	±50.0
Butylbenzylphthalate	0.100	20.0	±25.0	±50.0

3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene	0.010 0.300 0.200 0.200	40.0 20.0 20.0	± 40.0 ± 20.0	± 50.0 ± 25.0
	0.200 0.200			+25.0
Chrysene	0.200	20.0	+	1
			± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate		20.0	±25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	±40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	± 25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	±20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	±30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	±20.0	±25.0
Acenaphthylene	0.900	20.0	± 20.0	± 25.0
Acenaphthene	0.500	20,0	± 20.0	± 25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	±25.0	± 50.0
Fluoranthene	0.400	20.0	±25.0	± 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	± 25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	±25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	±40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	±40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	± 50.0
Deuterated Monitoring Compounds				

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0
Phenol-ds	0.010	20.0	±25.0	±25.0
Bis-(2-chloroethyl)ether-da	0.100	20.0	±20.0	±25.0
2-Chlorophenol-d ₄	0.200	20.0	± 20.0	± 25.0
4-Methylphenol-d ₈	0.010	20.0	±20.0	±25.0
4-Chloroaniline-d4	0.010	40.0	± 40.0	± 50.0
Nitrobenzene-d ₅	0.050	20.0	±20.0	±25.0
2-Nitrophenol-d4	0.050	20.0	±20.0	±25.0
2,4-Dichlorophenol-d ₃	0.060	20.0	±20.0	±25.0
Dimethylphthalate-d ₆	0.300	20.0	±20.0	±25.0
Acenaphthylene-d ₈	0.400	20.0	±20.0	±25.0
4-Nitrophenol-d ₄	0.010	40.0	±40.0	± 50.0
Fluorene-d ₁₀	0.100	20.0	± 20.0	± 25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	±30.0	± 50.0
Anthracene-d ₁₀	0.300	20.0	± 20.0	±25.0
Pyrene-d ₁₀	0.300	20.0	±25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	±20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	±25.0	±50.0
2-Methylnaphthalene-dw(SIM)	0.300	20.0	± 20.0	± 25.0

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were metX
Criteria were not met
and/or see below

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	07/06/16_(SIM)
Date of initial calibration verification (IC	V):07/16/16
Date of continuing calibration verification	on (CCV):_07/22/16;_07/25/16
Date of closing CCV:	-
Instrument ID numbers:	GCMS3P
Matrix/Level:	Aqueous/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, %D, r		AFFECTED

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria. No closing calibration verification included in data package. No action taken, professional judgment.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Criteria for Closing CCV -	Action		
Cineria for Opening CCV	Criteria for Clusting CCV	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	UJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LABID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
Field/Equipmen	t/Trip blank			
DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/equip	ment_blanks_a	nalyzed_with_th	nis_data_package	
		40 75 Carlotter		

All criteria were metX
Criteria were not mel
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

	<u> </u>	LEAST LE LEB ACTIONS TOT SER	T
Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥CRQL	Use professional judgment
	≥CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
Method,		≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

Criteria	Action		
Сптегіа	Detect	Non-detect	
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R	
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J-	UJ	
Lower Acceptance limit $\leq \%R \leq Upper$ Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

Table 8. Semivolatile DMCs and the Associated Target Analytes

	voiatile DMCs and the Associated 1	8
1,4-Dioxane-ds (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
	Phenol	2,2'-Oxybis(1-chloropropane)
	l.	Bis(2-chloroethoxy)methane
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d4 (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d4 (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		
	-	

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine
4-Chlorophenyl-phenylether		*Phenanthrene
4-Bromophenyl-phenylether		*Anthracene
Carbazole		
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	1
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-ed)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC24433-1						Matrix	/Level:_	Gro	undwater		
The QC report	ed here	applies	to the foll	owing s	amples:		Metho	d: SW8 4	6 8270E	BY SIM	
JC24433-1, J	C24433-	2, JC24	433-3								
	JC244	33-1	Spike	MS	MS	Spike	MSD	MSD		Limits	
Compound	ug/l	Q	ug/i	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD	
Naphthalene	ND		2.2	1.20	55	2.2	1.22	56	11	23-140/36	
1,4-Dioxane	1.00		2.2	1.93	42	2.2	1.85	39	5	20-160/30	

Note: MS/MSD % recoveries and RPD within laboratory control limits.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT

IS AREA ACCEPTABLE RANGE

ACTION

Internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action			
Criteria	Detect	Non-detect		
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R		
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ		
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification		
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification		
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R		
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification		

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	e Retention Times (RRTs) of reported compouring Continuing Calibration Verification (CCV)	
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum froi calibration)] n a. b.	a of the sample compound and a current labor the associated calibration standard (opening nust match according to the following criteria: All ions present in the standard mass spectromust be present in the sample spectrum. The relative intensities of these ions must aga sample spectra (e.g., for an ion with an abuthe corresponding sample ion abundance mulons present at greater than 10% in the sample standard spectrum, must be evaluated by interpretation.	um at a relative intensity greater than 10% ree within ±20% between the standard and undance of 50% in the standard spectrum, ust be between 30-70%). The property of the pro
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
	ompounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

 	-	_
 ist		Cs
 - I		10 . %

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action			
Cincia	Detects	Non-detects			
%Solids < 10.0%	Use professional judgment	Use professional judgment			
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment			
%Solids > 30.0%	No qualification	No qualification			

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION	
			45
		-A	
		The state of the s	
- 6			
Total		29	

Criteria were and/or see b	 -

FIELD DUPLICATE PRECISION

Sample IDs:

field duplicate samples.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical

The project QAPP should be reviewed for project-specific information.

___JC24433-1/JC24433-2

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Field duplicate at detected target a	nalyzed as nalytes abo	part of this da	ta package. RPD with	in the requir	ed criteria < 50 % for

			All chiena were metX Criteria were not met and/or see below
OTHE	ER ISSUES		
A.	System Perform	ance	
List sa	amples qualified ba	ased on the degradation of system p	performance during simple analysis:
Samp		Comments	Actions
Action			
during	sample analyse	s. Inform the Contract Laboratory erformance which significantly affec	ined that system performance has degraded Program COR any action as a result of ted the data.
List sa	mples qualified ba	sed on other issues:	
Sampl	e ID	Comments	Actions
_No_o _for_d	ther_issues_that_ ecission_purpose	required_the_need_to_qualify_the_sOther_discrepancies_are_shown	dataResults_are_valid_and_can_be_used _below
Note:			
Action:	:		
ł.	Use professiona	I judgment to determine if there is	s any need to qualify data which were not

- qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results